ارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف


در حال بارگذاری
10 سپتامبر 2024
فایل ورد و پاورپوینت
2120
6 بازدید
۶۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 ارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف دارای ۲۱ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد ارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی ارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن ارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف :

نام کنفرانس، همایش یا نشریه : علوم و فنون نقشه برداری

تعداد صفحات :۲۱

در این مقاله یک روش نوین طبقه بندی متنی به منظور طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی ارائه شده است. روش پیشنهادی با تلفیق ماشین بردار پشتیبان (SVM) و طبقه بندی کننده ویشارت عمل می کند. بدین ترتیب این روش از مزایای هر دو نوع روش های پارامتریک و غیر پارامتریک بهره می برد. در این روش، ابتدا تابع انرژی اولیه میدان های تصادفی مارکوف (MRF) در یک همسایگی از هر پیکسل محاسبه می گردد. سپس با استفاده از ماتریس کوواریانس داده های پلاریمتری برای هر پیکسل و در نظر گرفتن توزیع ویشارت برای آن، تابع انرژی تفاضلی MRF محاسبه گردیده و در طبقه بندی کننده SVM وارد می شود. بنابراین روش پیشنهادی علاوه بر اطلاعات پراکنش مختلف، از اطلاعات همسایگی نیز بهره می برد و این باعث کاهش نویز نمک فلفلی در نتیجه طبقه بندی می گردد. به منظور انتخاب ویژگی های مناسب و تعیین پارامترهای بهینه برای طبقه بندی کننده SVM، از الگوریتم ژنتیک استفاده شده است. در این مقاله از دو تصویر پلاریمتری رادارست ۲ مربوط به فصل زمستان و تابستان از یک منطقه جنگلی دارای گونه های مختلف استفاده شده است. به منظور بررسی عملکرد روش پیشنهادی، نتایج بدست آمده از این روش با نتایج تعدادی از روش های پایه در طبقه بندی تصاویر پلاریمتری مقایسه شد. در نهایت طبقه بندی به این روش نسبت به روش های ویشارت، ویشارت-مارکوف و SVM، به ترتیب ۱۶، ۱۱ و ۷ درصد افزایش دقت را نشان می دهد.

کلید واژه: تصاویر پلاریمتری رادار با روزنه مجازی، ماشین بردار پشتیبان، توزیع ویشارت، میدان های تصادفی مارکوف، طبقه بندی تصاویر سنجش از دور

  راهنمای خرید:
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.