مقاله ارزیابی شبکه های عصبی انعطاف پذیر باساختار قابل بازسازی در حین آموزش جهت تخمین هارمونیکهای جریان استاتور ژنراتور آسک نیروگاه ری بر اساس الگوریتم CFE / SS


در حال بارگذاری
18 سپتامبر 2024
فایل ورد و پاورپوینت
2120
6 بازدید
۶۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

  مقاله ارزیابی شبکه های عصبی انعطاف پذیر باساختار قابل بازسازی در حین آموزش جهت تخمین هارمونیکهای جریان استاتور ژنراتور آسک نیروگاه ری بر اساس الگوریتم CFE / SS دارای ۱۴ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله ارزیابی شبکه های عصبی انعطاف پذیر باساختار قابل بازسازی در حین آموزش جهت تخمین هارمونیکهای جریان استاتور ژنراتور آسک نیروگاه ری بر اساس الگوریتم CFE / SS  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله ارزیابی شبکه های عصبی انعطاف پذیر باساختار قابل بازسازی در حین آموزش جهت تخمین هارمونیکهای جریان استاتور ژنراتور آسک نیروگاه ری بر اساس الگوریتم CFE / SS،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن مقاله ارزیابی شبکه های عصبی انعطاف پذیر باساختار قابل بازسازی در حین آموزش جهت تخمین هارمونیکهای جریان استاتور ژنراتور آسک نیروگاه ری بر اساس الگوریتم CFE / SS :

مقاله ارزیابی شبکه های عصبی انعطاف پذیر باساختار قابل بازسازی در حین آموزش جهت تخمین هارمونیکهای جریان استاتور ژنراتور آسک نیروگاه ری بر اساس الگوریتم CFE / SS که چکیده‌ی آن در زیر آورده شده است، در زمستان ۱۳۸۷ در پژوهش در فناوری برق (الکترونیک و قدرت) از صفحه ۱۱ تا ۲۱ منتشر شده است.
نام: ارزیابی شبکه های عصبی انعطاف پذیر باساختار قابل بازسازی در حین آموزش جهت تخمین هارمونیکهای جریان استاتور ژنراتور آسک نیروگاه ری بر اساس الگوریتم CFE / SS
این مقاله دارای ۱۱ صفحه می‌باشد، که برای تهیه‌ی آن می‌توانید بر روی گزینه‌ی خرید مقاله کلیک کنید.
کلمات مرتبط / کلیدی:
مقاله روش المان محدود
مقاله شبکه عصبی انعطاف پذیر
مقاله منحنی بهره برداری و ژنراتور سنکرون

چکیده و خلاصه‌ای از مقاله:
یکی از روشهای تشخیص خطای ژنراتور در حین کار، آنالیز هارمونیکهای جریان استاتور می باشد. در این مقاله از شبکه های عصبی انعطاف پذیر با قابلیت بازسازی خود در حین آموزش برای تعیین هارمونیکهای جریان استاتور ژنراتور، در بارهای مختلف استفاده شده است. داده های آموزش دهنده شبکه عصبی با استفاده از مدل سازی ژنراتور و استفاده از روش المان محدود (FE) و فضای حالت (SS)، در نقاط مختلف بار روی منحنی بهره برداری ژنراتور برای سه سطح مختلف ولتاژ پایانه بدست آمده است. شبکه عصبی که با استفاده از این داده ها آموزش داده شده است، یک شبکه پرسپترون با یک لایه پنهان و با قانون یادگیری پس انتشار خطا می باشد. نتایج نشان می دهد که شبکه عصبی انعطاف پذیر آموزش داده شده با خطای کمتر از ده درصد می تواند هارمونیکهای جریان را برای نقاط بار دلخواه روی منحنی بهره برداری، نسبت به نتایج حاصل از الگوریتم CFE-SS به دست آورد. پارامترهای نامی ژنراتور آسک عبارتند از: ۴۳۹۵۰ کیلو ولت آمپر، ۱۱ کیلو ولت، ۳۰۰۰ رادیان بر دقیقه، ۵۰ هرتز و ضریب توان.۰۸

  راهنمای خرید:
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.