مقاله تحقیق رشته الکترونیک


در حال بارگذاری
13 سپتامبر 2024
فایل ورد و پاورپوینت
2120
2 بازدید
۷۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

  مقاله تحقیق رشته الکترونیک دارای ۲۶ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله تحقیق رشته الکترونیک  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله تحقیق رشته الکترونیک،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن مقاله تحقیق رشته الکترونیک :

انواع دیودهای قدرت
در حالت ایده آل دیود نباید هیچ زمانی بازیابی معکوسی داشته باشد که هزینه ساخت دیود را افزایش می دهد . در بسیاری از کاربردهای اثرات زمان بازیابی معکوس چندان اهمیت ندارند و می توان از دیود از دیودهای ارزان استفاده کرد . بسته به مشخصه های بازیابی و روشهای ساخت ، دیودهای قدرت را به سه گروه می توان تقسیم کرد . مشخصه ها و محدودیت های عملی هر گروه کاربردشان را مشخص می کند .
۱- دیودهای استاندارد یا همه منظوره
۲- دیودهای بازیابی سریع
۳- دیودهای شاتکی
دیودهای همه منظوره

دیودهای یکسو کننده همه منظوره زمان بازیابی معکوس نسبتاً زیادی دارند که در حدودs 25 است و در کاربردهای سرعت پایین بکار می روند که زمان بازیابی چندان اهمیتی ندارد (برای مثال در یکسو کننده ها و مبدلهای دیودی در کاربردهای فرکانس رودی کم تا ۱KHz ومبدلهای کموتاسیون خط ) .محدوده جریان این دیودها از کمتر از یک آمپر تا چند هزار آمپر و محدوده ولتاژ ۵۰v تا حدود ۵kv می باشد . این دیودها معمولاً به روش دیفیوژن ساخته می شوند . با این وجود یکسو کننده های آلیاژی که در منابع تغذیه دستگاههای جوشکاری بکار می روند از لحاظ هزینه به صرفه تر هستند و محدوده کاری آنها تا ۳۰۰A و ۱۰۰۰V می رسد .

دیودهای بازیابی سریع
دیودهای بازیابی سریع زمان بازیابی کوچکی (به طور معمول کمتر از s ) دارند . این دیودها در مدارهای مبدل dc به dc,dc,dc به ac که سرعت بازیابی اغلب اهمیت بحرانی ای دارد بکار می روند . محدوده جریانی کارکرد این دیودها از کمتر از یک آمپر تا چند صد آمپر و محدوده ولتاژشان از ۵۰ v تا حدود ۳kv است .
برای محدوده ولتاژ بالای ۴۰۰v ،‌دیودهای بازیابی سریع عموماً به روش دیفیوژن ساخته می شوند و زمان بازیابی بوسیله دیفیوژن طلا یا پلاتین کنترل می شود . برای محدوده ولتاژ کمتر از ۴۰۰ v دیودهای اپی تکسال سرعت کلید زنی بیشتری نسبت به دیودهای دیفیوژنی دارند . دیودهای اپی تکسال پهنای بیس کمی دارند که باعث می شود زمان بازیابی کوچکی در حدود ۵۰ns داشته باشند .

دیودهای شاتکی
مشکل ذخیره بار در پیوند p-n در دیودهای شاتکی حذف (یا حداقل ) شده است . این کار از طریق ایجاد یک سد پتانسیل که میان یک فلز و یک نیمه هادی متصل می شود ، انجام می پذیرد . یک لایه فلزی روی یک لایه اپی تکسیال باریک از سیلیکون نوع n قرار داده می شوند . سد پتانسیل رفتار یک پیوند p-n را شبیه سازی می کند . عمل یکسو کنندگی فقط به حاملهای اکثریت بستگی دارد و در نتیجه حاملهای اقلیت اضافی ای برای ترکیب شدن وجود ندارند . اثر بازریابی منحصراً به خاطر ظرفیت خازنی خودپیوند نیمه هادی است .

بار الکتریکی بازیابی یافته در یک شاتکی خیلی کمتر از یک دیود پیوند p-n معادل است . از انجایی که این بار ناشی از ظرفیت خازنی پیوند است تا حد زیادی مستقل از di/dt معکوس می باشد . دیودهای شاتکی افت ولتاژ مستقیم نسبتاً کوچکی دارند .
جریان نشتی دیودهای شاتکی بیشتر از دیودهای پیوند p-n است . یک دیود شاتکی با ولتاژ هدایت نسبتاً کم ، جریان نشتی نسبتاً زیادی دارد و برعکس . در نتیجه حداکثر ولتاژ مجاز آن معمولاً به ۱۰۰v محدود می شود . محدوده جریان کاری دیودهای شاتکی از ۱ تا ۳۰۰A می باشد . دیودهای شاتکی برای بکار گیری در منابع تغذیه dc با ولتاژ کم و جریان بالا ایده آل هستند . اگر چه به منظور بالا بردن بازده ، این دیودها در منابع تغذیه با جریان کم نیز استفاده می شوند .

اثرات زمان بازیابی معکوس و مستقیم
اهمیت این پارامترها را می توان از روی شکل توضیح داد . اگر کلید sw در لحظه t=o بسته شود و به حد کافی بسته باقی بماند ، یک جریان حالت پایدار از بار خواهد گذشت و دیود هرز گرد Dm جریان خواهد یافت . حالا اگر کلید دوباره در t= t1 بسته شود دیود Dm مثل یک اتصال کوتا ه عمل می کند . سرعت افزایش جریان مستقیم کلید (و دیود D1) و سرعت کاهش جریان مستقیم دیود Dm خیلی زیاد خواهد بود و به بی نهایت میل می کند . پیک جریان معکوس دیود Dm می تواند خیلی زیاد باشد و دیود های D1 و Dm ممکن است آسیب ببیند .
این مشکل را اغلب می توان با اتصال یک سلف Ls محدود کننده di /dt حل کرد .

دیودهای واقعی به زمان معینی برای روشن شدن نیاز دارند تا اینکه تمامی سطح پیوند رسانا شود و di/dt باید کم نگه داشته شود تا محدودیت زمان روشن شدن رعایت شود . این زمان گاهی اوقات با نام زمان باز یابی مستقیم tf نیز ذکر می شود .
انواع تریستورها
تریستورها تقریبا تنها به روش تزریق ساخته می شوند . جریان آند برای انتشار از نزدیکی گیت به تمام سطح پیوند ( هنگامی که سیگنال جهت روشن کردن تریستور اعمال می شود ) به زمان معینی نیاز دارد .
سازندگان برای کنترل di/ dt ، زمان روشن شدن و زمان خاموش شدن ، از ساختارهای متفاوتی برای گیت استفاده می کنند . تریستورها بسته به ساختار فیزیکی و محوه روشن و خاموش شدن ، به ۹ دسته زیر تقسیم می شوند :
۱- تریستورهای کنترل فاز ( SCR )
۲- تریستورهای کلید زنی سریع ( SCR )
۳- تریستورهای خاموش شونده با گیت ( GTO)
۴- تریستورهای سه قطبیدو جهته ( TRIAC )
۵- تریستورهای هدایت معکوس ( RCT )

تریستورهای کنترل فاز
این نوع تریستورها عموما در فرکانس خط کار می کنند و بوسیله کموتاسیون طبیعی خاموش می شوند . زمان خاموش شدن tq ، در محدوده ۵۰ تا ۱۰۰ u s می باشد . این تریستور بیشتر برای کلید زنی در سرعتهای کم مناسب است . نام دیگر این تریستورها تریستور مبدا می باشد . از آنجا که اصولا تریستوریک وسیله کنترل شده از جنس سیلیکون است ، این دسته از تریستورها با نام یکسو کننده های کنترل شده سیلیکونی نیز شناخته می شوند .

ولتاژ حالت روشن VT غالباً بین ۱۱۵V (برای ترانسفورماتورهای ۶۰۰V) تا ۱۲۵V (برای ترانسفورماتورهای ۴۰۰۰V) تغییر می کند و برای یک تریستور ۵۵۰۰A و ۱۲۰۰V ، معمولاً در حدود ۱۲۵V است .تریستورهای جدید از یک تقویت کننده گیت استفاده می کنند . به گجونهای که سیگنال ابتدا به گیت یک تریستور کمکی TA اعمال می شود و خروجی تقویت شده TA به گیت تریستور اصلی TM اعمال می گردد. استفاده از تقویت کننده گیت مشخصه های دینامیکی خوبی را به ما می دهد ، تنها مشخصات دینامیکی تریستور را تا حدودی بهبود بخشیده و با کم کردن یا به حداقل رساندن اندازه سلفه محدود کننده di/dt و مدارهای حفاظتی dv/dt باعث ساده شدن طراحی می شود .

تریستورهای کلیدزنی سریع
کاربرد این دسته از تریستورها در کلید زنی با سرعت بالا و همراه با کموتاسیون اجباری ست . زمان خاموش شدن این تریستورها کم و بسته به محدوده ولتاژ ۵ تا s 50 است . افت ولتاژ مستقیم تریستور در حالت روشن ، تقریباً تابع معکوسی از زمان خاموش شدن tq می باشد . این تریستورها را تحت عنوان تریستور اینورتر نیز می شناسند .

این تریستورها دارای dv/dt بالا در حد s 1000v/ و di/dt بالا در حد s 1000 A/ هستند . قطع سریع di/dt بالا عمل بسیار مهمی در کاهش اندازه و وزن مدار کموتاسیون و / یا اجزای مدار راکتیو هستن . ولتاژ حالت روشن یک تریستور ۲۲۰۰A,1800V حدود ۱۷V است . تریستورهای اینورتری با قابلیت سد کنندگی معکوس خیلی محدود در حد ۱۰V و زمان قطع بسیسار سریع بین ۳ تا ۵ s با نام تریستورهای نا متقارن شناخته می شوند .

تریستورهای خاموش شونده با گیت
هر تریستور خاموش شونده با گیت نظیر یک SCR می توان با اعمال یک سیگنال مثبت به گیت روشن شود . به علاوه با اعمال سیگنال منفی به گیت ،می توانیم آن را خاموش کنیم . GTO یک عنصر تثبیت کننده است و می تواند با مقادیر جریان و ولتاژ نامی مشابه SCR ها ساخته می شد . GTO با اعمال یک پالس کوچک مثبت به گیت روشن و با اعمال یک پالس منفی کوچک به گیت خاموش می شود .
مزایای GTO نسبت به SCR به این شرح است :
۱- حذف اجزای کموتاسیون د رکموتاسیون اجباری که حجم ، وزن و قیمت آنها را کاهش می دهد .
۲- کاهش نویز الکترومغناطیسی و نویز صوتی به دلیل حذف چکهای کموتاسیون .
۳- قطع سریع تر ، که کلید زنی در فرکانسهای بالا را امکان پذیر می سازد .
۴- بهبود بازده مبدلها .
در کاربردهای توان پایین GTO ها نسبت به ترانزیستورهای دو قطبی دارای مزیت زیر هستند .
۱- توانایی تحمل ولتاژهای سد کنندگی بالاتر.
۲- نسبت بالای جریان پیک قابل کنترل به جریان متوسط
۳- نسبت بالای جریان خیزش پیک به جریان متوسط .
۴- بهره حالت روشن بالا
۵- سیگنال پالس گیت کوتاه . در شرایط خیزش ، GTO به دلیل عمل نورزایی ، بیشتر با اشباع می رود . در حالی که در ترانزیستورهای دو قطبی و در چنین شرایطی ، ترانزیستور سعی دارد از اشباع خارج شود .

GTO هنگام خاموش شدن بهره کمی دارد که معمولاً در حدود ۶ است و برای خاموش شدن به یک پالس جریانی منفی نسبتاً بزرگ نیاز دارد. GTO نسبت به SCR دارای ولتاژ حالت روشن بالاتری است . به عنوان مثال ولتاژ حالت روشن یک GTO با مقادری نامی ۵۵۰A,1200V برابر ۳۴ V می باشد . یک GTO با مقادیر نامی ۱۶۰A.200V از نوع ۱۶۰PFT

جریان پیک حالت روشن قابل کنترل ITGQ ماکزیمم جریان حالت روشن است که می تواند با کنترل گیت خاموش شود . ولتاژ حالت خاموش بلافاصله پس از خاموش شدن دوباره اعمال می شود و dv/dt دوباره اعمال شده تنها خازن مدار پیشگیری محدود می شود . وقتی GTO خاموش می شود ، جریان بار IL که منحرف شده و خازن مدار محافظ را شارژ می کند ، مقدار dv/dt دوباره اعمال گشته را تعیین می کند.
که در آن خازن مدار محافظ می باشد .

تریستورهای دو جهته یا تریاک
تریاک وسیله ای است که می تواند در هر دو جهت هدایت کند و غالباً در کنترل فاز ac استفاده می شود . هر تریاک را می توان به صورت اتصال موازی – معکوس دو SCR که دارای گیت مشترک هستند ، در نظر گرفت .

از آنجا که تریاک یک وسیله دو جهته است پایه های آن نامی تحت عنوان کاتد یا آند ندارند . اگر ترمینال MT2 نسبت به ترمینال MT1 مثبت باشد ، می توان با اعمال سیگنال مثبت به گیت بین پایه های گیت G و ترمینال MT1 تریاک را روشن نمود . برای روشن کردن تریاک نیاز نیست که دو سیگنال مثبت و منفی برای گیت داشته باشیم و وجود سیگنال مثبت یا منفی کفایت می کند . در عمل حساسیت تریاک از ربعی به ربع دیگر تغییر می کند و به طور طبیعی در ربع I+ یا در ربع III فعالیت می کند.

  راهنمای خرید:
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.