استفاده از رهیافت شبکه عصبی پرسپترون چند لایه در پیش بینی تقاضای کالای فاسد شدنی درخرده فروشی ها
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
استفاده از رهیافت شبکه عصبی پرسپترون چند لایه در پیش بینی تقاضای کالای فاسد شدنی درخرده فروشی ها دارای ۱۷ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد استفاده از رهیافت شبکه عصبی پرسپترون چند لایه در پیش بینی تقاضای کالای فاسد شدنی درخرده فروشی ها کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی استفاده از رهیافت شبکه عصبی پرسپترون چند لایه در پیش بینی تقاضای کالای فاسد شدنی درخرده فروشی ها،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن استفاده از رهیافت شبکه عصبی پرسپترون چند لایه در پیش بینی تقاضای کالای فاسد شدنی درخرده فروشی ها :
تعداد صفحات :۱۷
چکیده مقاله:
یکی از روش های مناسب در پیش بینی سری زمانی، تعمیم رفتار گذشته سری به آینده است. برای این منظور اولین قدم، شناخت دقیق رفتار گذشته متغیر است. از مهمترین روش های الگوسازی رفتار گذشته سری زمانی میتوان به مدل غیرخطی شبکه عصبی مصنوعی پرسپترون چندلایه اشاره کرد. در این پژوهش از مدل ANN(mlp) برای پیش بینی تقاضای هفتگی کالاهای انزال پذیر دریکی از خرده فروشی های شهر گرگان استفاده شده است و همچنین برای درک میزان دقت پیش بینی، با دو مدل دیگر؛ خود رگرسیون میانگین متحرک انباشته ARIMA و میانگین متحرک ۱۴ روزه؛ که در این خرده فروشی بکار می رود ؛ مقایسه شده است. برای این منظور، از کد نویسی این مدل در نرم افزار MATLAB R2016a داده های سری زمانی تقاضای هفت قلم کالاهای انزال پذیراین فروشگاه از ابتدای سال ۱۳۹۲ تا هفته دوازدهم سال ۱۳۹۵ که به صورت هفتگی از فروشگاه دریافت گردید استفاده شد. نتایج تحقیق نشان داد که مدل ANN6-8-1 نسبت به مدل های ARIMA 1، ۱، ۰ و میانگین متحرک روزه مدل مناسب تری برای پیشب ینی تقاضای محصولات فاسدشدنی این فروشگاه است و میزان خطای بسیار کمتری دارد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.