مقاله تخمین مدل و استنتاج آماری


در حال بارگذاری
12 سپتامبر 2024
فایل ورد و پاورپوینت
2120
3 بازدید
۶۹,۷۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 مقاله تخمین مدل و استنتاج آماری دارای ۲۹ صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله تخمین مدل و استنتاج آماری  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

بخشی از فهرست مطالب پروژه مقاله تخمین مدل و استنتاج آماری

تخمین مدل و استنتاج آماری  
بررسی ایستایی (ساکن بودن) سری های زمانی  
آزمون ساکن بودن از طریق نمودار همبستگی و ریشه واحد  
تغییرات ساختاری و آزمون ریشه واحد پرون  
رگرسیون ساختگی  
هم انباشتگی (هم جمعی)  
– آزمون هم انباشتگی (هم جمعی)  
– آزمون همگرایی جوهانسن مو جوسیلیوس  
مروری بر الگوهای اقتصاد سنجی پولی  
الگوهای کینزی  
الف- نگرشی کوتاه بر مبنای نظری در الگوهای کینزی  
ب- مروری بر الگوی FRB-MIT  
بخش مالی  

بررسی ایستایی (ساکن بودن) سری های زمانی[۱]

قبل از تخمین مدل، به بررسی ایستایی می پردازیم. می توان چنین تلقی نمود که هر سری زمانی توسط یک فرآیند تصادفی تولید شده است. داده های مربوط به این سری زمانی در واقع یک مصداق از فرآیند تصادفی زیر ساختی است. وجه تمایز بین (فرآیند تصادفی) و یک (مصداق) از آن، همانند تمایز بین جامعه و نمونه در داده های مقطعی است. درست همانطوری که اطلاعات مربوط به نمونه را برای استنباطی در مورد جامعه آماری مورد استفاده قرار می دهیم، در تحلیل سریهای زمانی از مصداق برای استنباطی در مورد فرآیند تصادفی زیر ساختی استفاده می کنیم. نوعی از فرآیندهای تصادفی که مورد توجه بسیار زیاد تحلیل گران سریهای زمانی قرار گرفته است فرآیندهای تصادفی ایستا می باشد

برای تاکید بیشتر تعریف ایستایی، فرض کنید Yt یک سری زمانی تصادفی با ویژگیهای زیر است

(۱) : میانگین

(۲)   واریانس

(۳)   کوواریانس

(۴)    ضریب همبستگی

که در آن میانگین ، واریانس  کوواریانس  (کوواریانس بین دو مقدار Y که K دوره با یکدیگر فاصله دارند، یعنی کوواریانس بین Yt و Yt-k) و ضریب همبستگی  مقادیر ثابتی هستند که به زمان t بستگی ندارند

اکنون تصور کنید مقاطع زمانی را عوض کنیم به این ترتیب که Y از Yt به Yt-k تغییر یابد. حال اگر میانگین، واریانس، کوواریانس و ضریب همبستگی Y تغییری نکرد، می توان گفت که متغیر سری زمانی ایستا است. بنابراین بطور خلاصه می توان چنین گفت که یک سری زمانی وقتی ساکن است که میانگین، واریانس، کوواریانس و در نتیجه ضریب همبستگی آن در طول زمان ثابت باقی بماند و مهم نباشد که در چه مقطعی از زمان این شاخص ها را محاسبه می کنیم. این شرایط تضمین می کند که رفتار یک سری زمانی، در هر مقطع متفاوتی از زمان، همانند می باشد[۲]

آزمون ساکن بودن از طریق نمودار همبستگی و ریشه واحد[۳]

یک آزمون ساده برای ساکن بودن براساس تابع خود همبستگی (ACF) می باشد. (ACF) در وقفه k با  نشان داده می شود و بصورت زیر تعریف می گردد

 از آنجاییکه کوواریانس و واریانس، هر دو با واحدهای یکسانی اندازه گیری می‌شوند،  یک عدد بدون واحد یا خالص است.  به مانند دیگر ضرایب همبستگی، بین (۱-) و (۱+) قرار دارد. اگر  را در مقابل K (وقفه ها) رسم نماییم، نمودار بدست آمده، نمودار همبستگی جامعه نامیده می شود. از آنجایی که عملاً تنها یک تحقق واقعی (یعنی یک نمونه) از یک فرآیند تصادفی را داریم، بنابراین تنها می‌توانیم تابع خود همبستگی نمونه،  را بدست آوریم. برای محاسبه این تابع می‌بایست ابتدا کوواریانس نمونه در وقفه K و سپس واریانس نمونه را محاسبه نماییم

 که همانند نسبت کوواریانس نمونه به واریانس نمونه است. نمودار  در مقابل K نمودار همبستگی نمونه نامیده می شود. در عمل وقتی  مربوط به جامعه را ندایم و تنها  را براساس مصداق خاصی از فرآیند تصادفی در اختیار داریم باید به آزمون فرضیه متوسل شویم تا بفهمیم که  صفر است یا خیر. بارتلت (۱۹۴۹)[۴] نشان داده است که اگر یک سری زمانی کاملاً تصادفی یعنی نوفه سفید باشد، ضرایب خود همبستگی نمونه تقریباً دارای توزیع نرمال با میانگین صفر و واریانس  می باشد که در آن n حجم نمونه است. براین اساس می توان یک فاصله اطمینان، در سطح ۹۵ درصد ساخت. بدین ترتیب اگر  تخمینی در این فاصله قرار گیرد، فرضیه(=۰) را نمی توان رد کرد. اما اگر  تخمینی خارج از این فاصله اعتماد قرار گیرد می توان صفر بودن  را رد کرد

آزمون دیگری نیز بصورت گسترده برای بررسی ایستایی سریهای زمانی بکار می‌رود که به آزمون ریشه واحد معروف است. برای فهم این آزمون مدل زیر را در نظر بگیرید[۵]

Yt = Yt-1+Ut

Ut جمله خطای تصادفی است که فرض می شود بوسیله یک فرآیند تصادفی مستقل (White Noise) بوجود آمده است. (یعنی دارای میانگین صفر، واریانس ثابت  و غیر همبسته می باشد)

خواننده می تواند تشخیص دهد که معادله فوق، یک معادلخ خود رگرسیون مرتبه اول یا AR(1) می باشد. در این معادله مقدار Y در زمان t بر روی مقدار آن در زمان (t-1) رگرس شده است. حال اگر ضریب Yt-1 برابر یک شود مواجه با مساله ریشه واحد می شویم. یعنی این امر بیانگر وضعیت غیر ایستایی سری زمانی Yt می باشد. بنابراین اگر رگرسیون زیر را اجرا کنیم

 و تشخیص دهیم که  است، گفته می شود متغیر Yt دارای یک ریشه واحد است. در اقتصاد سنجی سریهای زمانی، سری زمانی که دارای یک ریشه واحد باشد، نمونه‌ای از یک سری زمانی غیر ایستا است

معادله فوق غالباً به شکل دیگری نیز نشان داده می شود

 که در آن ،  اپراتور تفاضل مرتبه اول می باشد. توجه کنید که  است. اما اکنون فرضیه صفر ما عبارت است از  که اگر  برابر با صفر باشد می توانیم معادله فوق را بصورت زیر بنویسیم

 این معادله بیانگر آن است که تفاضل اول سری زمانی Yt ساکن می باشد. زیرا بنا به فرض Ut یک جمله اختلال سفید (اختلال خالص) می باشد

اگر از یک سری زمانی یک مرتبه تفاضل گرفته شود (تفاضل مرتبه اول) و این سری تفاضل گرفته شده ساکن باشد، آنگاه سری زمانی اصلی (انباشته از مرتبه اول[۶]) می باشد و به صورت I(1) نشان داده می شود

به طور کلی اگر از یک سری زمانی d مرتبه تفاضل گرفته شود، انباشته از مرتبه d یا I(d) می باشد. پس هرگاه یک سری زمانی انباشته از مرتبه یک یا بالاتر باشد سری زمانی غیر ایستا خواهد بود. بطور متعارف اگر d=0 باشد، در نتیجه فرآیند I(0) نشان دهنده یک فرآیند ساکن می باشد. به همین علت نیز یک فرآیند ساکن بصورت I(0) مورد استفاده قرار می گیرد


[۱]  Stationary

[۲]  ریشه واحد و هم جمعی در اقتصاد سنجی- محمد نوفرستی- موسسه فرهنگی رسا- چاپ اول- ۱۳۷۸

[۳]  Correlogram and Unit root test of stationary

[۴]  Bartlett

[۵]  مبانی اقتصاد سنجی- دامودار گجراتی- موسسه انتشارات دانشگاه تهران- بهار ۱۳۷۸- چاپ دوم با تجدید نظر

[۶]  Intergrated of order one

  راهنمای خرید:
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.