مقاله کارایی شبکههای عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدلسازی بارش- رواناب در حوضه آبخیز سد زایندهرود
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
مقاله کارایی شبکههای عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدلسازی بارش- رواناب در حوضه آبخیز سد زایندهرود دارای ۲۱ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد مقاله کارایی شبکههای عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدلسازی بارش- رواناب در حوضه آبخیز سد زایندهرود کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله کارایی شبکههای عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدلسازی بارش- رواناب در حوضه آبخیز سد زایندهرود،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن مقاله کارایی شبکههای عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدلسازی بارش- رواناب در حوضه آبخیز سد زایندهرود :
تعداد صفحات :۲۱
در دهههای اخیر بهدلیل اهمیت یافتن مسئله آب و همینطور افزایش تمایل به محاسبه مقدار رواناب حاصل از بارش، توسعه و اجرای روشهای مناسب برای پیشبینی رواناب از روی دادههای بارش به مسئلهای ضروری تبدیل شده است. یکی از این روشها که در بسیاری از رشتهها از جمله هیدرولوژی توسعه یافته است، استفاده از روشهای محاسبات نرم نظیر منطق فازی و شبکههای عصبی مصنوعی است. در این تحقیق سعی گردید کارایی شبکه عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی بهمنظور برآورد بارش- رواناب در حوضه سد زایندهرود، مورد ارزیابی قرار گیرد. بهاینمنظور ابتدا با بهرهگیری از نرمافزار Wingamma دادهها و پارامترهای موجود مورد بررسی و تجزیه و تحلیل قرار گرفت و پارامترهای ورودی مناسب بهعلاوه تعداد مناسب داده برای آموزش شبکه، تعیین گردید. سپس با استفاده از آمار روزانه بارش- رواناب، کارایی شبکه عصبی مصنوعی و سیستم عصبی- فازی در تخمین رواناب حاصل از بارش مورد بررسی قرار گرفت. در ادامه میزان دقت و صحت این دو روش با بهرهگیری از روشهای آماری، مقایسه شد. نتایج حاصل از این مطالعه نشان داد که شبکه عصبی مصنوعی و سیستم فازی- عصبی در شرایط مختلف و با ترکیبهای مختلف پارامترهای ورودی، نتایج متفاوتی از خود نشان میدهند ولی در کل این دو روش بهمیزان قابل قبولی قادر به تخمین رواناب حاصل از بارش با بهکارگیری پارامترهای ورودی مناسب و استفاده از ساختارهای مناسب شبکه عصبی مصنوعی و شبکه عصبی- فازی، هستند.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.