مقاله مراحل تصفیه فاضلاب در پالایشگاه
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
مقاله مراحل تصفیه فاضلاب در پالایشگاه دارای ۴۸ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد مقاله مراحل تصفیه فاضلاب در پالایشگاه کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله مراحل تصفیه فاضلاب در پالایشگاه،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن مقاله مراحل تصفیه فاضلاب در پالایشگاه :
مراحل تصفیه فاضلاب در پالایشگاه
ناخالصی های موجود در آب :
آب خالص در طبیعت به دلیل ویژگیهای حلالیت بالای آن ، وجود ندارد و دارای ناخالصی های گوناگون می باشد ناخالصی های آب را به سه دسته کلی مواد جامد محلول ، مواد جامد معلق و کلوئیدی و گازها دسته بندی می نمایند.
مواد غیر محلول و معلق :
ذرات ریز و درشت مواد غیر محلول و معلق در آب دارای اهمیت بسیار متنوع می باشند این مواد معلق سبب کدورت آب می شوند. برخی از این ذرات که درشت تر هستند دارای قابلیت ته نشینی می باشند و با حذف آنها آب شفاف تر می گردد و برخی دیگر از این ذرات معلق قابلیت ته نشینی بسیار کمی دارند و برای ته نشینی نیاز به زمان طولانی دارند و یا اینکه به طور کلی غیر قابل ته نشینی هستند برخی از این مواد معلق عبارتند از :
(۱ذرات ریز خاک و سنگ و مواد تشکیل دهنده بستر رودخانه هاکه در اثر فرسایش زمین ایجاد شده اند.
(۲موجودات ریز زنده ( میکروارگانیزم ها) مانند باکتری ها
(۳ سیلیس کلوئیدی ، کلوئیدها ، سوسپانسون ها و امولسیون ها
در اینجا به دلیل اهمیت موضوع ، اشاره ای به محلول های حقیقی ، سوسپانسیون ، امولسیون و کلوئیدی می گردد.
هرگاه ذرات بسیار ریز یک جسم در بین ذرات جسم یا اجسام دیگر پراکنده گردد ، مجموعه حاصل سیستم پراکنده نامیده می شود در بین این سیستم بیشتر سیستم یا دستگاهی مورد بررسی می باشد که در آن حلال ، مایع می باشد زیرا این سیستم در تصفیه آب اهمیت بیشتری دارند که معمولا به آنها محلول گفته می شود . خواص چنین محلول هایی در درجه اول به بزرگی ذرات حل شده یا پراکنده شده بستگی دارد که بزرگی ذرات میزان پایداری آنها را تعیین می کند. اگر اندازه این ذرات بزرگتر از اندازه مولکول ها باشد ، سیستم
ناپایدار بوده و ذرات پراکنده می شوند و به سهولت جدا و بنابر چگالی خود دربالا یا پایین دستگاه جمع می شوند اینگونه سیستم ها یا دستگاهها را سیستم های معلق می گویند که ممکن است از نوع سوسپانسیون یا امولسیون باشند ولی اگر کاملا پایدار یا مدت طولانی پایدار باشند به محلول های واقعی معروف می باشند . ذرات جامد معلق در مایع را سوسپانسیون و مایع معلق در مایع را امولسیون می گویند این ذرات دارای ویژگیهای زیر می باشند :
۱) کم کم در سطح حلال و یا ته ظرف یعنی زیر حلال جمع می شوند.
۲) از پرده اسمزی عبور نمی کنند و اکثرا از کاغذ صافی هم عبور نمی کنند.
۳) این ذرات با چشم دیده نمی شوند ولی با میکروسکوپ های معمولی قابل مشاهده می باشند.
محلول های حقیقی مانند محلول نمک در آب دارای ویژگیهای زیر می باشند:
۱)نه در سطح حلال و نه در زیر حلال جمع می شوند.
۲)از هر نوع کاغذ صافی عبور می کنند.
۳) از پرده های اسمزی عبور می کنند.
۴) با الکترومیکروسکوپ ها هم قابل مشاهده نمی باشند.
مواد کلوئیدی ، حد واسطی بین سوسپانسیون ها ، امولسیون ها و محلول های واقعی می باشند که دارای ویژگیهای زیر می باشند :
۱) از کاغذ صافی عبور می کنند ولی از صافی های خیلی ریز ( اولترافیلتر) عبور نمی کنند.
۲) از پرده های اسمزی عبور می کنند.
۳) ته نشین نمی شوند ولی به هم می پیوندند و توده نیمه جامدی به نام لخته تشکیل می دهند.
مواد جامد محلول : دسته ای از ناخالصی های تشکیل دهنده آب موادی هستند که به صورت محلول می باشند . به طور کلی همه مواد در آب حل می شوند ولی میزان حلالیت آنها متناسب است.
انحلال در آب به سه صورت مولکولی ، قطبی ، یونی می باشد . مواد جامد در محلول به دو گروه کلی مواد یونی و مواد غیر یونی تقسیم میشوند.
گازها :
این مواد با مقادیر مختلف در آب ها حل می شوند .مقدار گاز حل شده به فشار گاز و نوع گاز از یک سو و از سوی دیگر به دمای آب ،مواد موجود در آب و PH آن بستگی دارد. برخی از گازهایی که وجودشان در آب تصفیه مطرح است عبارتند از :
NH3,CH4,H2S,CL2,O2,CO2
خواص آب با توجه به نوع و میزان ناخالی های آن :
با در نظر گرفتن مواد جامد در آب می توان خواص آب را به دودسته فیزیکی و شیمیایی تقسیم کرد : خواص فیزیکی آب : مواد موجود در آب موجب ایجاد تغییراتی در رنگ ، بو ، مزه و کدورت آب می شوند این خواص که تحت تاثیر شرایط محیطی واقع می شوند و خصوصیات ظاهری آب را نشان می دهند به همراه دما خواص فیزیکی آب هستند.
رنگ (Coloure) : آب خالص بدون رنگ است ولی آب ناخالص با توجه به میزان و نوع مواد محلول و یا معلق در آن ممکن است دارای رنگ باشد به عنوان مثال آب زرد رنگ می تواند نشان دهنده وجود اسیدهای آلی باشد و رنگ قهوه ای آب نشانگر یون های آهن می باشد. رنگ را می توان در اثر جذب سطحی یا فرایند منعقدسازی و یا اکسیداسیون از بین برد.
کدورت (Turbidity) : کدری یا کمبود شفافیت به دلیل وجود مواد معلق و یا کلوئیدی در آب است. کدورت آب موجب پراکنده شدن و یا جذب نور تابیده به آن می شود. برای اندازه گیری میزان کدورت آب از محلول شاهد استفاده می شود که به صورت واحد استاندارد اندازه گیری کدری مطرح است و هر واحد آن برابر کدری آبی است که شامل یک قسمت در میلیون سیلیس است. کدورت آب آشامیدنی باید از ۵ واحد کمتر باشد.
بو و مزه (Odor and Taste) : آب خالص بدون بو و مزه است وجود مواد مختلف در آب می تواند به آب بو و مزه های ویژه بدهد که برخی از آنها نامطبوع هستند. به عنوان مثال آب دریاچه های راکد بوی لجن می گیرد و یا در اثر وجود یون های سدیم کلرید ، شور مزه می شود و در اثر وجود نمک های منیزیم و پتاسیم تلخ مزه می شود. همچنین آبی با PH بالا دارای مزه ناخوشایند صابونی می باشد و در اثر وجود پرتون که به دلیل وجود اسید است ترش مزه می شود. آبی که محتوی مقداری گاز اکسیژن است دارای مزه مطلوب تری می باشد. وجود برخی از گازها مانند هیدروژن سولفاید (H2S) موجب تغییر بوی آب می شود.
خواص شیمیایی آب : خواص شیمیایی معمولا به ویژگیهایی از آب گفته می شود که در اثر میزان و نوع ماده حل شده در آن تغییر می کند از جمله این خواص می توان به اسیدیته ، قلیائیت ، هدایت الکتریکی ، سختی آب اشاره کرد.
هدایت الکتریکی (electrical conductivity) : قابلیت انتقال جریان برق نشانگر میزان هدایت الکتریکی است هدایت یک محلول را به صورت عکس مقاومت تعریف می کنند و واحد آن (mho) است . بنابراین واحد هدایت الکتریکی ,mho,1/mho (مو) و واحد هدایت ویژه mho/cm یا S/cm (زیمنس بر سانتی متر) می باشد.
به دلیل اینکه مقادیر هدایت ویژه کوچک است معمولا آن را در ۶ ۱۰ ضرب کرده و بر حسب Ms/cm میکروزیمنس بر سانتی متر) گزارش می کنند.
مقدار هدایت الکتریکی ویژه آب نشان دهنده میزان وجود املاح در آب است دلیل کاهش مقدار مقاومت الکتریکی در این است که با افزایش املاح حرکت یون ها روی یکدیگر اثر منفی می گذارند و هدایت الکتریکی محلول همانند محلول های رقیق با تعداد یون ها متناسب نمی باشد.
کل مواد جامد محلول در آب (Total disolved solids) : مقدار کل مواد غیر فرار حل شده در آب را که شامل یون های مختلف می باشد به نام کل مواد جامد محلول در آب می خوانند و با علامت T.D.S نشان می دهند.
مواد جامد معلق (Suspended solids-s.s) : وقتی آب از فیلتر عبور می کند مواد جامد معلق روی فیلتر باقی می ماند و مواد جامد محلول و مواد کلوئیدی موجود در آب از فیلتر عبور می کند. با خشک کردن مواد جامد باقی مانده روی فیلتر و وزن کردن آن مقدار مواد جامد معلق (s.s) بدست می آید.
از مجموع مواد جامد محلول در آب و مواد جامد معلق ، کل مواد جامد بدست می آید.
کل مواد جامد معلق (s.s) + کل مواد جامد محلول (T.D.S) = کل مواد جامد (T.S)
به دلیل آنکه یون ها عامل انتقال جریان برق در محلول ها هستند و میزان هدایت الکتریکی را مشخص می کنند رابطه نزدیکی بین هدایت الکتریکی (E.C) و کل مواد جامد محلول در آب (T.D.S) وجود دارد که به صورت زیر می باشد :
E.C × ضریب = T.D.S
که با توجه به محدوده هدایت الکتریکی ، ضریب موجود در فرمول فوق (۲/۱-۵/۰) تغییر می کند.
سختی آب (hardness) : آب سخت واژه ای است که به آب حاوی کاتیون های کلسیم و منیزیم ، آهن و منگنز و ; گفته می شود با توجه به اینکه میزان آهن و منگنز در آب بسیار کم است بنابراین کاتیون های کلسیم و منیزیم عامل اصلی ایجاد سختی آب به حساب می آیند. سختی آب بر حسب واحدهایی مثل میلی گرم ، یون در لیتر یا بر حسب معادل کلسیم کربنات حل شده در آب بیان می شود.
انوع سختی :
۱) سختی کل (Total hardness-T.H)
کل املاح کلسیم و منیزیم موجود درآب سختی کل نامیده می شود و شامل دو قسمت است : الف) سختی کل کلسیم : نشان دهنده مقدار یون کلسیم در آب است. ب) سختی کل منیزیم : کل منیزیم محلول در آب را شامل می شود.
۲) سختی دائم (Permanent hardness)
شامل کلیه املاح کلسیم و منیزیم به جز بی کربنات ها می باشد به عنوان مثال ، سولفات ها ، کلرید ها و نیتراتهای کلسیم و منیزیم محلول در آب را در بر می گیرد و سختی دایم در اثر جوشاندن حذف نمی شود.
۳) سختی موقت (Temporary hardness)
کلسیم و منیزیم بی کربنات محلول در آب را می گویند که در اثر جوشاندن آب طبق واکنش زیر تجزیه می شوند و رسوب می کنند .
سختی موقت + سختی دائم = سختی کل
– اسیدیته (Acidity) :
آب خالص به مقدار خوبی یونیزه می شود و مقادیر مساوی از یون های OH-,H+ تولید می کند . غلظت یون های تولید شده تابعی از دماست .
– قلیائیت (Alkalinity) :
از نظر شیمیایی ، قلیائیت آب نشانگر مقدار ظرفیت خنثی شدن آن به وسیله اسید می باشد . خنثی شدن آب به معنی رسیدن به PH آب به حدود ۵/۴ است.
قلیائیت آب های طبیعی به سبب وجود هیدروکسیدها ، کربنات ها و بی کربنات ها می باشد البته یون های دیگری مانند فسفات ها ، سیلیکات ها و بورات ها نیز می توانند موجب قلیائیت شوند ولی به دلیل غلظت بسیار کم آنها در مقایسه با یون های سری اول می توان از قلیائیت ناشی از آنها صرفه نظر کرد.
– اهمیت قلیائیت و رابطه آن با PH :
قلیائیت عامل موثر بر خوردگی و رسوب گذاری آب است . برای نمونه می توان گفت ، قلیائیت آب مورد استفاده در دیگ های بخار باید به اندازه کافی بالا باشد تا از خورده شدن دیواره دیگ ها جلوگیری شود همچنین قلیائیت نباید به حدی باشد که سبب انتقال مواد جامد به وسیله بخار شود و یا سبب شکنندگی قلیایی (Constic embri Hlement) شود و در دیواره دیگ ها ایجاد ترک نماید . قلیائیت با PH رابطه نزدیکی دارد به گونه ای که هر چه قلیائیت بیشتر باشد نشانگر بالاتر بودن غلظت هیدروکسیدها و کربنات ها است بنابراین PH بالاتر می رود و محلول قلیایی تر می شود.
حلالیت آب (Solubility) :
یکی از خواص بی نظیر آب قدرت حلالیت آن است ، آب می تواند تمام موادی را که با آن در تماس هستند در مقادیر متفاوت بسته به ثابت حلالیت و دما در خود حل کند به همین دلیل به آب حلال جهانی می گویند . به این دلیل که ساختمان خود آب قطبی است و مواد قطبی و نیز آن دسته از موادی که در آب یونیزه می شوند را بهتر حل می کند همچنین دما ، فشار و PH و غلظت از جمله عواملی هستند که بر میزان حلالیت در آب تاثیر می گذارند . وجود بعضی مواد در آب موجب تقویت انحلال مواد دیگر می شود و برعکس بعضی از مواد قابلیت حل شوندگی مواد دیگر را کاهش می دهند برای مثال وجود CO2 در آب موجب افزایش انحلال سنگ هایی مثل کلسیم و منیزیم می شود.
سنجش مقدار مواد آلی (Measurement of organic component)
برای اندازه گیری مقدار مواد آلی موجود در آب روش های مختلفی وجود دارد از جمله این روش ها اندازه گیری بخش مواد فرار ، اندازه گیری کل مواد جامد ، COD,BOD می باشد . چون اندازه گیری بخش مواد فرار و سنجش کل مواد جامد دارای خطای نسبتا زیادی است. بیشتر از اندازه گیری اکسیژن مورد نیاز بیوشیمیایی (BOD) و اکسیژن مورد نیاز شیمیایی (COD) و اندازه گیری کل کربن آلی (TOC) برای بدست آوردن مقدار مواد آلی موجود در آب استفاده می شود.
– اکسیژن مورد نیاز بیوشیمیایی (Biochemical oxygen demand)
آن دسته از موادی که توسط باکتریها تخمیر می شوند توسط این شاخص سنجیده می شود. در این اندازه گیری به جای اینکه مقدار موادی را که مورد اکسایش قرار میگیرند تعیین کنند مقدار اکسیژنی را که میکروارگانیسم های تجزیه کننده هوازی لازم دارند تا آن مقدار از ماده را اکسایش دهند اندازه گیری می کنند. در این روش استاندارد ۵ روزه ای بکار می رود که با ۵(BOD) نمایش داده می شود و عبارت است از اندازه گیری اکسیژنی که طی ۵ روز در دمای ۲۰ درجه سانتی گراد توسط باکتری های موجود در آب مصرف می شود تا بتواند مواد آلی موجود در آب را اکسایش دهند.
بنابراین برای اندازه گیری BOD باید اختلاف اکسیژن حل شده در زمان نمونه گیری و پس از ۵ روز را در نمونه بدست آورد.
BOD5=DO0-DO5
– اکسیژن مورد نیاز شیمیایی (Chemical oxygen Demand)
با کمک این شاخص می توان مقدار مواد آلی را که در آب موجودند و می شود آنها را به کمک اکسید کننده قوی نظیر اسید کرومیک یا پرمنگنات در محیط اسیدی اکسید کرد ، بدست آورد ، COD عبارت است از کل اکسیژن مورد نیاز شیمیایی که در واکنش های اکسیداسیون و تجزیه مواد آلی در محیط اسیدی و در مجاورت یک ماده قوی اکسید کننده مصرف می شود.
از محاسن این روش نسبت به BOD این است که آسان تر انجام می شود و وقت گیر نیست و کل عملیات اندازه گیری در مدت چند ساعت انجام می شود و همچنین می توان هم مواد آلی قابل تجزیه و هم مواد آلی غیر قابل تجزیه توسط باکتری ها را اندازه گیری کرد.
واکنش اصلی که بادی کرومات به عنوان یک اکسید کننده قوی انجام می شود به صورت زیر است :
ماده آلی
– مجموع اکسیژن مورد نیاز (Total oygen Demand)
روش مفید دیگری که برای تعیین مواد آلی به کار می رود روش TOC است در این روش مقداری از نمونه را در یک کوره در مجاورت کاتالیزور پلاتین به محصولات پایدار نهایی تبدیل می کند سپس اکسیژن موجود در گاز حامل نیتروژن محاسبه می شود و نتایج با روش COD وفق داده می شود.
فرایند نرم سازی به شیوه ته نشینی
(Softening process by sedimentation Method)
فرایند نرم سازی به منظور کاهش سختی آب بکار می رود. با استفاده از مواد شیمیایی ، سختی آب تحت واکنش های شیمایی قرار می گیرد و رسوب می نماید که در نتیجه سختی آب کاهش می یابد. سختی آب به دلیل وجود کربنات ها ، بی کربنات ها ، سولفات ها ،کلریدها و نیترات های فلزات کلسیم و منیزیم و آهن و آلومینیوم است. از آنجا که سه فلز آهن ، آلومینیوم به مقدار کم در آب وجود دارد ، قسمت عمده سختی آب مربوط به یون های کلسیم و منیزیم است . میزان سختی آب های خام تا حد زیادی به شرایط زمینی که آب در آن جاری است بستگی دارد و به همین دلیل مقدار یون ها در آب های سطحی و زیر زمینی متفاوت است . سختی آب به صورت دائم و یا سختی غیر کربناتی موقت یا سختی کربناتی بیان می شود.
حذف سختی موقت (Temporary hardness removal) :
استفاده از آب آهک روش عمومی برای کاهش سختی موقت آب است. آب آهک (کلسیم هیدروکسید) با کلسیم بی کربنات و منیزیم بی کربنات واکنش می دهد و رسوب کلسیم کربنات و منیزیم هیدروکسید تولید می کند .
با توجه به واکنش های بالا آب آهک لازم برای کاهش سختی منیزیمی دو برابر مقدار آب آهک لازم برای کاهش سختی کلسیم است.
حذف سختی دائم (Permanent hardness Removal) :
برای کاهش سختی غیر کربناتی آب از آهک / سود استفاده می شود. در سختی موقت با اضافه کردن یک ماده قلیایی مثل آهک یا سود ، بی کربنات موجود در محیط به کربنات تبدیل می شود و کربنات تولید شده باعث رسوب کردن کلسیم و کاهش سختی کلسیمی می شود.
روش دیگر در نرم سازی آب ،استفاده از سود سوزآور است که درمواد خالص به کار می رود . برتری استفاده از سود سوزآور این است که با کلسیم بی کربنات تولید سدیم کربنات می کند که خود این ماده در حذف سختی دائم موثر است.
تبادل یونی (Ion-exchange) :
رزین های تعویض یونی جامدات نامحلول در آب می باشند که به وسیله تبادل یون می توانند جهت جذب کاتیون ها و آنیون ها به کار گرفته شوند. پدیده تعویض یون ترکیبی از پدیده جذب سطحی و فرایند نفوذ می باشد و سرعت واکنش را عملیات انتقال جرم که یون ها را از سیال به سطح رزین و یا از سطح رزین به سیال می رساند مشخص می کند. پدیده تبادل یون یک تعادل شیمیایی است و از اصول حاکم بر تعادل ها پیروی می کند. در الکترولیت ها نیز پدیده تعویض یون وجود دارد ولی به دلیل همگن بود یون ها که در آن مبادله کننده های یون هر دو مایع می باشند عامل موثر سینتیک شیمایی است در حالیکه در تعویض یونی به دلیل جامد بودن رزین ها نفوذ یون ها مورد توجه می باشد در واقع پدیده تبادل یون به دلیل وجود نیروهای الکترواستاتیک می باشد و قدرت تبادل به این نیروها بستگی دارد و به شیوه ای است که مواد قبل و بعد از تبادل یون هر دو از نظر الکتریکی خنثی خواهند بود.
رزین های تبادل یونی ویژه بستر مختلط
(Mixed bed colums ion-exchange resins)
حذف کاتیون ها و آنیون های موجود در آب ، به طور همزمان به وسیله مخلوطی از رزین های تبادل یونی کاتیونی و آنیونی انجام میگیرد. در این فرایند مخلوط رزین ها در یک ستون قرار می گیرند و آب از بستر رزین عبور می کند و آب خروجی دارای T.D.S بسیار پایینی خواهد بود. احیای رزین های کاتیونی و آنیونی در چند مرحله انجام می پذیرد . در نخستین مرحله رزین ها به شیوه مکانیکی از هم جدا می شوند ، سپس رزین ها احیا می گردند و در مرحله نهایی دو رزین کاتیونی و آنیونی مخلوط می شوند و مورد استفاده قرار می گیرند.
مقایسه رزین های ضعیف و قوی :
رزین های تبادل یونی کاتیونی ، انیونی از دو نوع ضعیف و قوی در ویژگیهای برجسته زیر متمایز هستند :
۱)رزین های ضعیف توانایی یونی محدودی دارند در حالیکه رزین های قوی از توانایی تبادل یونی بالایی برخوردار هستند.
۲) رزین های ضعیف دارای ظرفیت بالاتری نسبت به نوع قوی می باشند و در برخی موارد ظرفیت تبادل یونی رزین های ضعیف بیشتر از دو برابر نوع قوی می باشد.
۳) جهت احیای رزین های ضعیف به میزان کمتری از ماده شیمایی نیاز می باشد.
۴) هزینه آب بی یون تولید شده به کمک استفاده توام رزین های ضعیف و قوی کمتر می باشد.
۵) رزین های ضعیف به درصد کمتری از ماده شیمیایی جهت احیا نیاز دارند بنابراین در سیستم های چند مرحله ای که از ستون های رزین های ضعیف و قوی استفاده می گردد، مواد احیا کننده خروجی از رزین های قوی جهت استفاده رزین های ضعیف بسیار مفید می باشند.
۶) احیای رزین های کاتیونی بطور معمول توسط سولفوریک اسید انجام می گردد. جهت جلوگیری از رسوب کلسیم سولفات بر روی رزین ها ، ابتدا از سولفوریک اسید یک و نیم درصد و در مرحله بعد از سولفوریک اسید چهار الی پنج درصد استفاده می گردد. غلظت اسید مورد استفاده برای احیای رزین های کاتیونی ضعیف حدود یک الی یک و نیم درصد می باشد.
۷)جهت احیای رزین های آنیونی معمولا از سدیم هیدروکسید چهار الی پنج درصد برای رزین های قوی استفاده می شود و پساب خروجی برای احیای رزین های آنیونی ضعیف استفاده می شود.
فرایند بی یون سازی (Demineralisation Process)
همواره فرایند بی یون سازی برای محلول های با غلظت های نسبتا بالا امکان پذیر است ولی از لحاظ اقتصادی هرگاه T.D.S آب خام کمتر از ppm 700 باشد فرایند تعویض یونی مطرح می شود . از لحاظ اقتصادی برای کاهش T.D.S تا رسیدن به حد مطلوب و جهت فرایند بی یون سازی شیوه های گوناگونی مطرح می باشد. برای مثال می توان در یک یا ترکیبی از روش های زیر آب خام ورودی به سیستم تبادل یونی را مهیا ساخت .
الف) الکترودیالیز
ب) اسمز معکوس
پ) تقطیر
ت) انرژی خورشیدی
ث) فرایند آب آهک زنی
ج) پمپهای حرارتی
انتخاب فرآیند بی یون سازی بر اساس موارد زیر است :
الف) کیفیت آب خام
ب) کیفیت آب مورد نیاز
پ ) هزینه سرمایه گذاری
ت) هزینه بهره برداری
خواص رزین های مبادله کننده یونی :
رزین های تبادل یونی بایستی از ویژگیهای خاصی برخوردار باشند . مهم ترین این ویژگیها عبارتنداز : الف) بزرگ بودن سطوح تبادل یونی
ب) دارا بودن ظرفیت بالا
پ) بالا بودن ضریب انتخاب
ت) مقاومت در برابر مواد شیمایی
ث) مقاومت در برابر تغییرات PH
ج) مقرون به صرفه بودن
چ) ارزان بودن مواد به کار گرفته شده در فرایند احیای رزین ها
ح) سمی نبودن
خ) دارا بودن مقاومت مکانیکی بالا
مزیت های روش تبادل یونی :
الف) سهولت در نصب و بهره برداری
ب) بالابودن عمر مفید رزین ها ( در شرایط بهره برداری مناسب عمر رزین ها بیشتر از ۱۵ سال است)
پ) قابلیت اجرا در ظرفیت های مختلف
ت) عدم وجود فاضلاب آلوده برای محیط زیست
محدودیت های روش تبادل یونی :
الف) در محدوده T.D.S>700ppm مقرون به صرفه نیست
ب ) این روش برای واحدهای صنعتی متداول می باشد و معمولا برای آب آشامیدنی مورد استفاده قرار نمی گیرد.
پ ) مواد شیمیایی مصرفی از همه روش ها بیشتر و آب تولیدی پرهزینه تر است.
ت ) بر اساس نوع رزین و پوشش ستون های تبادل یونی ماکزیمم دمای فرایند تبادل یونی محدودیت دارد.
ج ) اجسام غیر یونیزه قابلیت تبادل یونی ندارند.
چ ) حد مجاز آهن ، منگنز و فلزات سنگین در مجموع باید کمتر از ppm 1/0 باشد.
ح ) آب عبوری از رزین های تبادل یونی باید فاقد املاح معلق ، اجسام کلوئیدی ،چربی و مواد آلی باشد.
فرایند تبادل یونی با بستر ثابت (Fixed bed process)
استفاده از بستر ثابت رزین ها با جریان آب از بالا به پایین (Down flow) یکی از روش های مرسوم در تصفیه آب به کمک رزین هاست . کاهش درجه خلوص آب خروجی از ستون تبادل یون ، نشان دهنده این است که رزین ها اشباع شده اند و باید احیا گردند . عمل احیاء رزین در چهار مرحله انجام می پذیرد.
۱) شست و شوی معکوس به منظور شکوفا شدن رزین ها
۲)عبور از ماده احیا کننده از بستر به منظور احیای رزین ها
۳) آبکشی آهسته برای بیرون راندن آرام ماده احیا کننده از ستون تبادل یونی
۴) آبکشی سریع برای بیرون راندن آخرین ذرات ماده احیا کننده از بستر تبادل یونی
اطلاعات تکمیلی (Supplimentary information)
۱)از محلول های سولفوریک اسید و سود سوز آور برای احیای رزین ها استفاده می شود.
۲) در طراحی سیستم بی یون سازی با استفاده از رزین های تبادل یونی ، ترکیبی از رزین های مختلف و ستون های گوناگون به کار گرفته می شود . از لحاظ اقتصادی ، طراحی به گونه ای انجام می پذیرد که با اشباع شدن رزین های آنیونی ضعیف کل سیستم در فاز احیا قرار گیرد.
۳) میزان اسید و قلیای مورد استفاده جهت احیای رزین ها همواره بیشتر از مقدار استوکیومتری می باشد.
۴) در اثر مخلوط شدن رزین های کاتیونی ضعیف و قوی ، بهره برداری و و احیای سیستم دچار مشکل می گردد.
۵) هرگاه به هر دلیلی رزین های ستون کاتیونی با رزین های ستون آنیونی ضعیف مخلوط شوند، راندمان سیستم تبادل یونی به شدت کاهش می یابد.
۶) مناسب ترین دما جهت تولید آب بدون یون حدود ۳۵ درجه سانتی گراد و جهت احیای رزین ها حدود ۴۰ درجه سانتی گراد درنظر گرفته می شود.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.