مقاله PREDICTION OF CROSS – SECTION TEMPERATURE DURING THE MILLING PROCESS USING ARTIFICIAL NEURAL NETWORKS
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
مقاله PREDICTION OF CROSS – SECTION TEMPERATURE DURING THE MILLING PROCESS USING ARTIFICIAL NEURAL NETWORKS دارای ۲۴ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد مقاله PREDICTION OF CROSS – SECTION TEMPERATURE DURING THE MILLING PROCESS USING ARTIFICIAL NEURAL NETWORKS کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله PREDICTION OF CROSS – SECTION TEMPERATURE DURING THE MILLING PROCESS USING ARTIFICIAL NEURAL NETWORKS،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن مقاله PREDICTION OF CROSS – SECTION TEMPERATURE DURING THE MILLING PROCESS USING ARTIFICIAL NEURAL NETWORKS :
تعداد صفحات:۲۴
چکیده:
Information of the machined cross-section temperature during the milling process, is important in milling quality and tools life aspects . In this respect various studies, including experimental, numerical and analytical methods are done , usually in unstable mode . In the present study the milling cross-section temperature is determined by using Artificial Neural Networks ( ANN ) according to the temperature of certain points of the work piece and the points specificallons and the milling blade diameter . In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer ( CHT ) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x , y , z and the milling blade diameter as input data to the network , the milling surface temperature determined by neural network is presented as output data . the desired points temperature for different milling blade diameters are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN , CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.